		Electrical and Electronics Engineering Second Year (Third Semester)		
		Second real (Tillid Semester)	Contact	
SI.No	Course Code	Cubiant / Theomy		Credit
21.100	Course Code	Subject (Theory)	Hrs.	Credit
4	1444204	Mathematics-III	L-T-P	2
1	MA1201		3-0-0	3
2	EE1201	Professional Core-1: Electrical Machines – I	3-0-0	3
3	EE1202	Professional Core-2: Network Theory	3-0-0	3
4	EC1201	Professional Core-3: Analog Electronic Circuits	3-0-0	3
5	EE1203	Advanced Competency Course-1: Optimisation and Soft Computing (PC-4)	3-0-0	2
6	HS1201	Engineering Economics	3-0-0	2
		Subject (Sessional)		
7	EE1281	Electrical Machines Lab – I	0-0-3	1.5
8	EE1282	Network Lab	0-0-3	1.5
9	EC1281	Analog Electronic Circuits Lab	0-0-3	1.5
10	EE1283	Optimisation and Soft Computing Lab	0-0-3	1.5
		Total	18-0-12	22
		Second Year (Fourth Semester)		
			Contact	
Sl.No	Course Code	Subject (Theory)	Hrs.	Credit
			L-T-P	
1	EC1204	Professional Core-5: Digital System Design	3-0-0	3
2	EE1204	Professional Core-6: Measurement and Instrumentation	3-0-0	3
3	EE1205	Professional Core-7: Electrical Machines – II	3-0-0	3
4	EE1208	Professional Core-8: Signals and Systems	3-0-0	3
5	CS1204	Advanced Competency Course-2: Programming in Python (PC-9)	3-0-0	2
6	HS1202	Organizational Behavior	3-0-0	2
		Subject (Sessional)		
7	EE1286	Measurement and Instrumentation Lab	0-0-3	1.5
8	EC1284	Digital System Design Lab	0-0-3	1.5
9	EE1284	Electrical Machines Lab – II	0-0-3	1.5
10	CS1284	Programming in Python Lab	0-0-3	1.5
		Summer Internship and Research Experience (SIRE- I) *		
		Summer internship and Research Experience (Sike-1)		

	ELECTRICAL AND ELECTRONICS ENGINEERING	Im . 10	
Subject Code	MA1201	Total Contact Hour	30
Semester Subject Name	3rd Mathematics-III	Total Credit	3
Subject Name	SYLLABUS SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Cumulative Distribution Function (CDF). Variance and standard devi Functions of a random variable. Distributions: Binomial, Poisson, normal, Gaussian, uniform (definitions and exan generating function.		6 Hrs
Module-II	Pairs of random variables. Joint probability density function. Joint probability mass function. Marginal distribution random variables, PDF and expected values of the sum of two random variables	. Functions of two	6 Hrs
Module-III	Probability Models of n Random Variables. Vector notation. Independence of random variables and random vector vectors. Expected value vector and correlation matrix.	rs. Functions of random	6 Hrs
Module-IV	Stochastic Processes. Definitions and examples. Types of stochastic processes. Random variables from random proprocess.	ocesses. The Poisson	6 Hrs
Module-V	Markov Chains. Discrete-time Markov chain. Discrete-Time Markov chain dynamics. Limiting state probabilities f State classification.	for a finite Markov chain.	6 Hrs
Essential Reading	Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley and Sons, INC. Gregory F Lawler, Introduction to Stochastic Processe, Chapman & Hall/ CRC Press (Taylor Francis Group).		
Course Outcomes	The objective of this course is to familiarize the prospective engineers with techniques in Probability and Statistics advanced level of Statistics that would be essential for Engineering disciplines. CO1. To apply different distributions in real life problems of industries CO2. To deal with problems that contains multivariable probability distribution. knowledge Probability Models of multi-Random Variables CO4. To learn use of stochastic processes in daily life	1 1	nts to deal with
		Total Contact Hour	20
Subject Code	EE1201		30
Semester	3rd	Total Credit	3
Subject Name	ELECTRICAL MACHINES-I BASIC ELECTRICAL ENGINEERING		
Pre-requisites	SYLLABUS		
	Transformers: Review of Single phase transformer: no load andon load operation, Phasor diagram, equivalent circu	uit lossesand efficiency	
Module-I	condition for maximum efficiency, voltage regulation, open circuit and short circuit tests, Sumpner'stest.	·	6 Hrs
Module-II	Review of DC Machines: armature windings, lap and wavewindings, simplex and multiplex windings, E.M.F. Equ. Cross magnetizing and demagnetizing AT/pole, compensating winding, commutation, reactance voltage, methocommutation.		6 Hrs
Module-III	Review of DC Generators –Methods of Excitation, build up of E.M.F., critical field resistance and critical speed, ca excite and remedial measures, Loadcharacteristics of shunt, series and compound generators, parallel operat load sharing		6 Hrs
Module-IV	Review of DC Motors: characteristics and application of shunt, series and compound motors, Starting of DC motor Motors: Armature voltage and field flux control methods, Ward Leonard method. Calculation of efficiency, Testing Swinburne's test, Hopkinson's test, Field's test, Retardation test, separation of stray losses in a DC motor.		6 Hrs
Module-V	Three phase Transformers: Constructional features – threephase connection of transformers (Dd0, Dd6, Yy0, Yy6, Dy1, Dy11, Yd1, Yd11, Yd11, Zigzag), Scott connection, open delta connection, three phase to six phase connection, oscillating neutral, tertiary winding, three winding transformer, equal and unequal turns ratio, parallel operation, load sharing. Inrush of Switching currents.		6 Hrs
Essential Reading	J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers. A. E. Clayton, N. Hancock, "Performance and Design of D.C Machines", BPB Publishers		
Supplementary Reading	 A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publisher. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 		
Course Outcomes	Upon completion of the subject the students will demonstrate the ability to: CO1. Describe and analyze the performance of single phase transformers. CO2. Describe the construction and basic principles of dc machines. CO3. Express and analyze the performance of DC generators. CO4. Describe and analyze the performance of DC motors. CO5. Define and analyze the performance of three phase transformers.		
Subject Cod-	EE1202	Total Conts -t II	20
Subject Code Semester	EE1202 3rd	Total Contact Hour Total Credit	30
Subject Name	NETWORK THEORY	1 oral Cituit	3
Pre-requisites	BASIC ELECTRICAL ENGINEERING		
Module-I	Coupled Circuits: Self-inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natura current, Dot rule of coupled circuits, conductively coupled equivalent circuits-problems Electrical Circuit Analysis Using Laplace Transforms: Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, inverse Laplace transformed network with initial conditions. Transient Response: Transient study in series RL, RC, and RLC netwo Laplace transform method with DC and AC excitation. Response to step, impulse and ramp inputs of series RL, RC	ransform, and orks by time domain and	10 Hrs

Module-II	Two Port networks: Types of port network, short circuit admittance parameter, open circuit impedance parameters, transmission parameters, condition of reciprocity and symmetry in two port network, inter-relationship between parameters, input and output impedances in terms of two port parameters, image impedances in terms of ABCD parameters, Tee and Pie circuit representation, Cascade and Parallel Connections.	8 Hrs
Module-III	Network Functions & Responses: Concept of complex frequency, driving point and transfer functions for one port and two port network, poles & zeros of network functions. Restriction on Pole and Zero locations of network function, Time domain behavior and stability from pole-zero plots, Time domain response from pole zero plots.	8 Hrs
Module-IV	Network Synthesis: Realizability concept, Hurwitz property, positive realness, properties of positive real functions, Synthesis of R-L, R-C and L-C driving point functions, Foster and Cauer forms.	8 Hrs
Module-V	Graph theory: Introduction, Linear graph of a network, Tie-set and cut-setschedule, incidence matrix, Analysis of resistive network using cut-set and tie-set, Dual of a network. Filters: Classification of filters, Characteristics of ideal filters.	6 Hrs
Essential Reading	A. Chakrabarti, "Circuit Theory (Analysis and Synthesis)", Dhanpat Rai Publications. Mac.E Van Valkenburg, "Network Analysis", PHI Learning publishers. Franklin Fa-Kun. Kuo, "Network Analysis & Synthesis", John Wiley & Sons.	
Supplementary Reading	M. L. Soni, J. C. Gupta, "A Course in Electrical Circuits and Analysis", Dhanpat Rai Publications. Mac.E Van Valkenburg, "Network Synthesis", PHI Learning publishers. Joseph A. Edminister, Mahmood Maqvi, "Theory and Problems of Electric Circuits", Schaum's Outline Series, TMH publishers.	
Course Outcomes	CO1. Study coupled circuits and learn the transient and steady state behavior of 1st and 2nd order circuit and understand the concept of tir CO2. Define the different parameters of two port network CO3. Concept of network function and stability study from pole-zero plots CO4. Synthesis of electrical networks CO5. Analyze the network using graph theory and understand the importance of filters in electrical system	me constant
Subject Code	EC1203 Total Contact Hour	30
Semester	3 rd Total Credit	3
Subject Name	Analog and Digital Electronic Circuits	
Pre-requisites	Basic Electronics	
	SYLLABUS	
Module-I	Biasing of BJT: Fixed bias circuit, Self-bias circuit. Transistor at Low Frequencies: h-parameters, Transistor hybrid Model, amplifier Using h-parameter, Miller's theorem. Transistor at high frequency: Hybrid-pi CE transistor model.	6 Hrs
Module-II	Biasing of BJT: Fixed bias circuit, Self-bias circuit. Transistor at Low Frequencies: h-parameters, Transistor hybrid Model, amplifier Using h-parameter, Miller's theorem.	6 Hrs
	Transistor at high frequency: Hybrid-pi CE transistor model.	
Module-III	Transistor at high frequency: Hybrid-pi CE transistor model. The basic operational amplifier (OP-AMP): inverting and non- inverting configurations and applications. Digital circuits: NOR DTL gates, HTL gate, TTL gate, RTL and DCTL.	6 Hrs
Module-III Module-IV	The basic operational amplifier (OP-AMP): inverting and non- inverting configurations and applications.	6 Hrs
	The basic operational amplifier (OP-AMP): inverting and non- inverting configurations and applications. Digital circuits: NOR DTL gates, HTL gate, RTL and DCTL. Boolean Algebra & Logic gates: Property and functions of Boolean algebra, Canonical & standard form; min-terms & max-terms, standard forms; Digital Logic Gates. Gate level Minimization: K- Map method, Product of Sum simplification, Sum of Product simplification, Don't	
Module-IV	The basic operational amplifier (OP-AMP): inverting and non- inverting configurations and applications. Digital circuits: NOR DTL gates, HTL gate, TTL gate, RTL and DCTL. Boolean Algebra & Logic gates: Property and functions of Boolean algebra, Canonical & standard form; min-terms & max-terms, standard forms; Digital Logic Gates. Gate level Minimization: K- Map method, Product of Sum simplification, Sum of Product simplification, Don't care conditions. Combinational digital systems: Standard gate assembles, Binary adder, arithmetic functions, Multiplexer, Demultiplexer, Encoder. Sequential digital systems: A 1-bit memory, Flip-flops, shift	6 Hrs

Course Outcomes	Upon completion of the subject the students will demonstrate the ability to: CO1. Design of various types of amplifiers using BJT and FET using the concept of DC and AC analysis CO2. Analyse the frequency response of various amplifiers. Comprehend the fundamental concepts in feedback am CO3. Acquaint with the design of logic gates using BJT. CO4.Use the concept of Boolean algebra for the analysis and design of various combinational and sequential circuifrom simple ordinary gates to complex programmable logic devices. CO5. Analyse the sequential logic circuits design both in synchronous and asynchronous modes for various comple	its. Design of various logi	
Subject Code	EE1203 3 rd	Total Contact Hour	35
Semester Subject Name	Optimization and Soft Computing	Total Credit	2
Pre-requisites	Knowledge of MATLAB		
			Contact Hours
	SYLLABUS		Contact Hours
Module-I	Introduction to Optimization: Objective function and constraints, Solution approaches, Multiobjective optimization Computing: What is Soft Computing? Difference between Hard and Soft computing, Requirement of Soft computing Computing, various typesof soft computing techniques, Applications of Soft Computing.	ng, Major Areas of Soft	7 Hrs
Module-II	Introduction to Fuzzy Logic: Fuzzy Sets: Basic Definition andTerminology, Set-theoretic Operations, Fuzzy versus Relation, Linguistic variables, Fuzzification and Defuzzification Method,Membership Function Formulation and P. Rules and Fuzzy Reasoning, Fuzzy If-Then Rules, Fuzzy Reasoning, Fuzzy Inference Systems, Mamdani Fuzzy Mc of Fuzzy logic. Artificial Neural Network: Concept of Biological neurons and	arameterization, Fuzzy	7 Hrs
Module-III	Arthrical Neural Network: Concept of Biological neurons and its working, Important Terminology in ANN, Supervised and Unsupervised Learning, Simulation of biological neu Different ANNs architectures, Training techniques for ANNs, Applications of ANNs to solve some real-life problem.		7 Hrs
Module-IV	Introduction to genetic algorithm and their terminology, Working Principles, operators in genetic algorithm-codin over – mutation, Stopping condition for genetic algorithm flow, Introduction to Fitness function.	ng - selection - cross	7 Hrs
Module-V	Introduction to Non-traditional Metaheuristic Optimization Techniques, Concept of Swarm Intelligence Algorithm, Particle Swarm Optimization, Ant colony optimization (AC	CO)	7 Hrs
Essential Reading	D.K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, Springer A.E. Eiben , J.E. Smith, Introduction to Evolutionary Computing, Springer. S.N.Sivanandam, S.N.Deepa , Principles of Soft Computing, Wiley India Pvt Ltd.		
Supplementary Reading	S S Rao, Engineering Optimization: Theory and Practice, Wiley. Jang, Sun and Mizutani, Neuro-Fuzzy and Soft Computing archive.nptel.ac.in/courses/106/105/106105173/		
Course Outcomes	CO1. Formulate optimization problem and evaluate the application of soft computing for solution. CO2. Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems. CO3. Apply Artificial Neural Network to solve optimization problems. CO4.Apply genetic algorithm to solve optimization problems. CO5.Apply swarm intelligence algorithms to solve optimization problems.		
Subject Code	HS1201	Total Contact Hour	30
Semester		Total Credit	2
Subject Name	Engineering Economics SYLLABUS		Contact Hours
Module-I	Basic Principles of Economics: Definition, Nature, Scope and significance of economics for Engineers. Demand of Determinants, Elasticity-Government policies and application. Basic Macro economics concept: National income a (GDP/GNP/NI/Disposable Income etc.) and identities for both closed and open economies.		6 Hrs
Module-II	Utility Analysis: Cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of dimit Consumer's equilibrium: Principle of equi-marginal utility; Indifference curve-Concepts, properties, Budget line, Econsumer, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox a hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis	quilibrium of the	6 Hrs
Module-III	Production, Cost and Market Structure: Production function: short run production function and law of variable production function: Isoquants, isocost line, returns to scale, Optimum factor combinations, Cost Analysis: Conceprun and Long run cost curves, Analytical and accounting cost concepts; Market structure: Market classifications, Pc Characteristics, price and output determination in Short run and long run, Monopoly market: Price and output determination Modern theories of firms: Baumol's theory of sales revenue maximisation, Bain's limit pricing mod	ots, Classification- Short erfect competition: rmination, price	6 Hrs
Module-IV	Money and Banking: Money-Function of Money, Demand for Money Theory. Quantity theory of money; Banking and their Functions, Central bank's Functions. Role of the Banks in Economic Development, Monetary and Fiscal impact on the economy.	Policy Tools and their	6 Hrs
Module-V	Capital Budgeting and Investment Analysis: Time value of money: use of cash flow diagram, Annual economic future worth, Internal Rate of Return (IRR), Net Present Value (NPV), Payback period method, Analysis of public analysis, Cost effectiveness		6 Hrs
Essential Reading	Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press Ltd., London Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics, Pearson India, New Delhi Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia		

	CO1- Utilise economics principles in consumption process		
	CO2- Describe the utility measurement and measure the utility associated with risk		
Course Outcomes	CO3- Efficient use of resources in production and take decision regarding optimum output		
	CO4- Describe market mechanism and analyse product market to take proper decisions		
	CO5- Implement economic principles in company related decision making		
	OFFICE OF THE PARTY OF THE PART		
0.11 . 0.1	SESSIONAL	T . 10	
Subject Code	· ·	Total Contact Hour	16
Semester	3 rd	Total Credit	1.5
Subject Name	Electrical Machines LABORATORY -I		
	List of Experiments		
1	Open circuit and short circuit on single phase transformer		
2	Parallel operation of two single phase transformer and load sharing		
3	Back –to-back test of Single phase transformer		
4	Load characteristics of DC shunt/compound generator		
5	Load characteristics of DC series Motor		
6			
7	Swinburne test of DC shunt machine		
	Brake test of DC shunt machine		
8	Three phase connection of transformers		
	CO1. Perform parallel connection of single phase transformers		
	CO2. Evaluate performance of DC series and shunt motors.		
Course Outcomes	CO3. Compute the efficiency of transformer by different experimental tests.		
	CO4. Perform tests to evaluate performance of DC machine and transformers.		
	CO5. Estimate load performance of DC series motor		
	SESSIONAL		
Subject Code	=====	Total Contact Hour	12
Semester	3 rd	Total Credit	1.5
Subject Name	NETWORK LABORATORY		
	List of Experiments		
1	Verification of Superposition and Thevenin's Theorem.		
2	Verification of Maximum Power Transfer Theorem.		
3	Find out the resonance frequency, band width and Q-factor of a series R-L-C circuit.		
4	Transient response of a series R-L, R-C and R-L-C circuit using DC excitation.		
	Determination of Z, Y, ABCD and h parameters of a two port network.		
5	Determination of Z, T, ABCD and it parameters of a two port network.		
5			
	Spectral Analysis of a non-sinusoidal waveform.		
5			
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to:		
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems.	dth. O footon and of a D I	Cassias sinovit
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwice.	dth, Q-factor and of a R-L	-C series circuit.
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation.		-C series circuit.
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwid CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc		-C series circuit.
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation.		-C series circuit.
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwid CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc		-C series circuit.
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwid CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc		-C series circuit.
5	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform		-C series circuit.
5 6 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwid CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL	city of network	
5 6 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwid CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwid CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprod CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd	city of network	
5 6 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters.	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwid CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprod CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters.	city of network Total Contact Hour	20
Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwid CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprod CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET.	city of network Total Contact Hour	20
Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits.	city of network Total Contact Hour	20
Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor.	city of network Total Contact Hour	20
Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer.	city of network Total Contact Hour	20
Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400.	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of 5-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter.	city of network Total Contact Hour	20
Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers.	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to:	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwice CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprod CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits.	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 4 5 6 6 7 8 8 9 10	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of SiSO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors.	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO3. Implement different power amplifier circuits.	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 4 5 6 6 7 8 8 9 10	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits. CO4. Design combinational circuits such as adder, subtractor and multiplexers.	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 4 5 6 6 7 8 8 9 10	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO3. Implement different power amplifier circuits.	city of network Total Contact Hour	20
5 6 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 4 5 6 6 7 8 8 9 10	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits. CO4. Design combinational circuits such as Adder, subtractor and shift registers.	city of network Total Contact Hour	20
Subject Code Semester Subject Name 1 2 3 4 4 5 6 6 7 7 8 8 9 10 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits. CO4. Design combinational circuits such as Adder, subtractor and multiplexers. CO5. Design of sequential circuits such as FFs, counters and shift registers.	Total Contact Hour Total Credit	20 1.5
Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 10 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwice CO3. Describe and evaluate the Transient response of R-L., R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprod CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO3. Implement different power amplifier circuits. CO4. Design combinational circuits such as adder, subtractor and multiplexers. CO5. Design of sequential circuits such as FFs, counters and shift registers.	Total Contact Hour Total Credit Total Credit	20 1.5
Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 10 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwice co3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprod co5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits. CO4. Design combinational circuits such as FFs, counters and shift registers.	Total Contact Hour Total Credit	20 1.5
Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 10 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of 5-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits, clipper and clamper circuits. CO4. Design combinational circuits such as adder, subtractor and multiplexers. CO5. Design of sequential circuits such as FFs, counters and shift registers. SESSIONAL EE1283 3rd Optimization and Soft Computing LABORATORY	Total Contact Hour Total Credit Total Credit	20 1.5
Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 10 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwice co3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprod co5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits. CO4. Design combinational circuits such as FFs, counters and shift registers.	Total Contact Hour Total Credit Total Credit	20 1.5
Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 10 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of 5-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits, clipper and clamper circuits. CO4. Design combinational circuits such as adder, subtractor and multiplexers. CO5. Design of sequential circuits such as FFs, counters and shift registers. SESSIONAL EE1283 3rd Optimization and Soft Computing LABORATORY	Total Contact Hour Total Contact Hour Total Credit Total Contact Hour Total Contact Hour	20 1.5
Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 10 Course Outcomes	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe and revaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-bit asynchronous counter and Mod-N counter. Design of SiSO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO3. Implement different power amplifier circuits. SESSIONAL EE1283 3rd Optimization and Soft Computing LABORATORY List of Experiments Solution of single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadprosciple) and properties of the properties of the single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadprosciple) and properties of the pr	Total Contact Hour Total Contact Hour Total Credit Total Contact Hour Total Contact Hour	20 1.5
Subject Code Semester Subject Name 1 2 3 4 4 5 6 6 7 7 8 8 9 10 Course Outcomes Subject Code Semester Code Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe and revaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of 3-Sib a synchronous counter and Mod-N counter. Design of SiSO, SIPO, PISO, PISO, PIPO Shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the arracteristics of transistors. CO3. Implement different power amplifier circuits. CO4. Design of sequential circuits such as Adder, subtractor and multiplexers. CO5. Design of sequential circuits such as FFs, counters and shift registers. SESSIONAL EE1283 3rd Optimization and Soft Computing LABORATORY List of Experiments Solution of single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadpr. Solution of single objective optimization using OCTAVE sqp and GAMS solvers.	Total Contact Hour Total Contact Hour Total Credit Total Contact Hour Total Contact Hour	20 1.5
Subject Code Semester Subject Name 1 2 3 4 4 5 5 6 6 7 7 8 8 9 10 10 Course Outcomes Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of S-B, DO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO3. Implement different power amplifier circuits, clipper and clamper circuits. CO4. Design of sequential circuits such as adder, subtractor and multiplexers. CO5. Design of sequential circuits such as Adder, subtractor and multiplexers. CO6. Design of sequential circuits such as FFs, counters and shift registers. SESSIONAL EE1283 3rd Optimization and Soft Computing LABORATORY List of Experiments Solution of single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadpr Solution of single objective optimization using OCTAVE sqp and GAMS solvers.	Total Contact Hour Total Contact Hour Total Credit Total Contact Hour Total Contact Hour	20 1.5
Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 10 Course Outcomes Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of S-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits. SESSIONAL EE1283 3rd Optimization and Soft Computing LABORATORY List of Experiments Solution of single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadpr Solution of fingle objective optimization using OCTAVE sqp and GAMS solvers. Implementation of fuzzy tool box to solve optimization problem. Design of Fuzzy rule base and Fuzzy Inference System to solve an optimization problem.	Total Contact Hour Total Contact Hour Total Credit Total Contact Hour Total Contact Hour	20 1.5
Subject Code Semester Subject Name 1	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuit by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. Rc phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of S-BO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits, clipper and clamper circuits. CO4. Design of sequential circuits such as FFs, counters and shift registers. SESSIONAL EE1283 3rd Optimization and Soft Computing LABORATORY List of Experiments Solution of single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadpr. Solution of single objective and full-greence System to solve an optimization problem. Implementation of Genetic Algorithms to solve an optimization problem. Implementation of Genetic Algorithms to solve an optimization problem.	Total Contact Hour Total Contact Hour Total Credit Total Contact Hour Total Contact Hour	20 1.5
Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 10 Course Outcomes Subject Code Semester Subject Name	Spectral Analysis of a non-sinusoidal waveform. Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwic CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciproc CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. SESSIONAL EC1283 3rd ANALOG AND DIGITAL ELECTRONIC CIRCUITS LABORATORY List of Experiments Determination of the frequency response of Low pass filters. Determination of the frequency response of High pass filters. Study of output characteristics of FET. Analysis of BJT biasing circuits. RC phase shift oscillator and to observe its output waveform. Realization of half-adder, full-adder, half-subtractor and full-subtractor. Design and implementation of multiplexer and demultiplexer. Realization of S-R and J-K flip flop using 7400. Design of S-bit asynchronous counter and Mod-N counter. Design of SISO, SIPO, PISO, PIPO shift registers. Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits. SESSIONAL EE1283 3rd Optimization and Soft Computing LABORATORY List of Experiments Solution of single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadpr Solution of fingle objective optimization using OCTAVE sqp and GAMS solvers. Implementation of fuzzy tool box to solve optimization problem. Design of Fuzzy rule base and Fuzzy Inference System to solve an optimization problem.	Total Contact Hour Total Contact Hour Total Credit Total Contact Hour Total Contact Hour	20 1.5

Course Outcomes	Upon completion of the course, the students will be able to: CO1. Demonstrate the use of MATLAB, OCTAVE and GAMS solvers. CO2. Demonstrate the use of fuzzy logic to solve optimization problems. CO3. Demonstrate the use of genetic algorithm to solve optimization problems. CO4. Demonstrate the use of artificial neural networks to solve optimization problems. CO5. Demonstrate the use of swarm optimization algorithms to solve optimization problems		
	4TH SEMESTER		
Subject Code	EC1204	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Digital System Design		
Course Objective	To understand concepts of digital electronics and to formulate, design and solve different digital circuits. To design, implement and simulate various combinational and sequential circuits. To understand various logic families and memory modules. To provide the students with a solid foundation in engineering fundamentals required to solve problems and al 5. To understand the fundamentals of VLSI design flow.	so to pursue higher studies.	
	SYLLABUS		
Module-I	Logic Simplification: Review of Boolean Algebra, SOP & POS forms, Canonical forms, Karnaugh maps up to 5 Code Conversion, Binary addition and subtraction using 1's and 2's complements.	variables, Binary codes,	4 Hrs
Module-II	Combinational Logic Design: MSI devices like Half and Full Adders, Subtractors, Serial and Parallel Adders, BC multiplier, magnitude comparator, Multiplexers, Encoder, Decoder,	D Adder, Binary	5 Hrs
Module-III	Sequential Logic Design: Building blocks like S-R, D, T, JK and Master-Slave JK FF, Edge triggered FF, Ripple counters, Shift registers, Analysis of clocked sequential circuits, Finite state machines, Design of synchronous		6 Hrs
Module-IV	Sequential Logic Design: Building blocks like S-R, D, T, JK and Master-Slave JK FF, Edge triggered FF, Ripple counters, Shift registers, Analysis of clocked sequential circuits, Finite state machines, Design of synchronous		6 Hrs
Module-V	VLSI Design flow: Design entry: Schematic, FSM & HDL, Digital Design using Verilog: Introduction, Verilog N Operators in Verilog, Verilog Data types, Behavioural Modelling, Structural Modelling, Combinational and Sequ Verilog, blocking and Non-Blocking Statement, Procedural Statements.		4 Hrs
Essential Reading	R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009. Digital Design, 4th edition by M. Morris Mano, M. D. Ciletti, Pearson Education. Samir Planitkar, "Verilog HDL", Prentice Hall, 2nd edition, 2003.		
Course Outcomes	After completion of course student should be able to:- 1. Understand different number systems and logic gates 2. Design andanalysisofdifferentcombinational logic circuit. 3. Design andanalysisofdifferentcombinational logic circuit. 4. Understand the characteristics of different logic families and memory. 5. Implement digital circuits in different models in Verilog HDL.		
	Understand different number systems and logic gates Design andanalysisofdifferentcombinational logic circuit. Design andanalysisofdifferentcombinational logic circuit. Understand the characteristics of different logic families and memory.	Total Contact Hour	3
Subject Code	Understand different number systems and logic gates Design andanalysisofdifferentcombinational logic circuit. Design andanalysisofdifferentcombinational logic circuit. Understand the characteristics of different logic families and memory. Implement digital circuits in different models in Verilog HDL.	Total Contact Hour Total Credit	3 30
Subject Code Semester	Understand different number systems and logic gates Design andanalysisofdifferentcombinational logic circuit. Design andanalysisofdifferentcombinational logic circuit. Understand the characteristics of different logic families and memory. Implement digital circuits in different models in Verilog HDL. EE1204 4th Measurement and Instrumentation		
Subject Code Semester	Understand different number systems and logic gates Design andanalysisofdifferentcombinational logic circuit. Design andanalysisofdifferentcombinational logic circuit. Understand the characteristics of different logic families and memory. Implement digital circuits in different models in Verilog HDL. EE1204		
Subject Code Semester Subject Name	Understand different number systems and logic gates Design andanalysisofdifferentcombinational logic circuit. Design andanalysisofdifferentcombinational logic circuit. Understand the characteristics of different logic families and memory. Implement digital circuits in different models in Verilog HDL. EE1204 4th Measurement and Instrumentation	Total Credit ontrol and	
Subject Code Semester Subject Name Module-I	1. Understand different number systems and logic gates 2. Design andanalysisofdifferentcombinational logic circuit. 3. Design andanalysisofdifferentcombinational logic circuit. 4. Understand the characteristics of different logic families and memory. 5. Implement digital circuits in different models in Verilog HDL. EE1204 4th	ontrol and e and control torque,	30
Subject Code Semester Subject Name Module-I	1. Understand different number systems and logic gates 2. Design andanalysisofdifferentcombinational logic circuit. 3. Design andanalysisofdifferentcombinational logic circuit. 4. Understand the characteristics of different logic families and memory. 5. Implement digital circuits in different models in Verilog HDL. EE1204 4th Measurement and Instrumentation SYLLABUS Measuring Instruments: Classification, Absolute and secondary instruments, indicating instruments, deflecting, of damping torques, Ammeters and Voltmeters, PMMC, Moving Iron (MI) type, expression for the deflecting torque extension of range using shunts and series resistance. Electrodynamometer type wattmeter – Theory & its errors – Methods of correction – LPF wattmeter – Phantom loading – Induction type KWH meter – Calibration of wattmet Measurement of active and reactive powers in balanced and unbalanced systems. Galvanometers: General princip equations of D'Arsonval Galvanometers, Vibration	ontrol and e and control torque, ter, energy meter. ble and performance th variable inductance & gner's earthing device.	30 6 Hrs
Subject Code Semester Subject Name Module-I Module-II	1. Understand different number systems and logic gates 2. Design andanalysisofdifferentcombinational logic circuit. 3. Design andanalysisofdifferentcombinational logic circuit. 4. Understand the characteristics of different logic families and memory. 5. Implement digital circuits in different models in Verilog HDL. EE1204 4th Measurement and Instrumentation SYLLABUS Measuring Instruments: Classification, Absolute and secondary instruments, indicating instruments, deflecting, of damping torques, Ammeters and Voltmeters, PMMC, Moving Iron (MI) type, expression for the deflecting torque extension of range using shunts and series resistance. Electrodynamometer type wattmeter – Theory & its errors – Methods of correction – LPF wattmeter – Phantom loading – Induction type KWH meter – Calibration of wattmed Measurement of active and reactive powers in balanced and unbalanced systems. Galvanometers: General princing equations of D'Arsonval Galvanometers, Vibration Galvanometer and Ballistic Galvanometer. DC/AC Bridges: General equations for bridgebalance, measurement of self-inductance by Maxwell's bridge (wi variable capacitance), Hay's bridge, Owen's bridge, measurement of capacitance by Schearing bridge, errors, Wa Method of measuring low, medium and high resistance: Kelvin's double bridge for measuring low resistance, WI	ontrol and e and control torque, ter, energy meter. ole and performance th variable inductance & gner's earthing device. neat-stone's bridge,	6 Hrs
Subject Code Semester Subject Name Module-II Module-III Module-IV Module-V	1. Understand different number systems and logic gates 2. Design andanalysisofdifferentcombinational logic circuit. 3. Design andanalysisofdifferentcombinational logic circuit. 4. Understand the characteristics of different logic families and memory. 5. Implement digital circuits in different models in Verilog HDL. EE1204 4th Measurement and Instrumentation SYLLABUS Measuring Instruments: Classification, Absolute and secondary instruments, indicating instruments, deflecting, of damping torques, Ammeters and Voltmeters, PMMC, Moving Iron (MI) type, expression for the deflecting torque extension of range using shunts and series resistance. Electrodynamometer type wattmeter – Theory & its errors – Methods of correction – LPF wattmeter – Phantom loading – Induction type KWH meter – Calibration of wattmed Measurement of active and reactive powers in balanced and unbalanced systems. Galvanometers: General princing equations of D'Arsonval Galvanometers, Vibration Galvanometer and Ballistic Galvanometer. DC/AC Bridges: General equations for bridgebalance, measurement of self-inductance by Maxwell's bridge (wi variable capacitance), Hay's bridge, Owen's bridge, measurement of capacitance by Schearing bridge, errors, Wamethod of measuring low, medium and high resistance: Kelvin's double bridge for measuring low resistance, Wimeasurement of high resistance – loss of charge method. Instrument Transformers: Potential and current transformers, ratio and phase angle errors, phasor diagram, methe Potentiometers: DC Potentiometer, Crompton potentiometer, construction, standardization, application. AC Potentiometers: DC Potentiometer, Crompton potentiometer, construction, standardization, application. AC Potentiometers: DC Potentiometer, Crompton potentiometer, construction, standardization, application. AC Potentiometers: DC Potentiometer, Crompton potentiometer, construction, standardization, application. AC Potentiometers:	ontrol and e and control torque, ter, energy meter. ole and performance th variable inductance & gner's earthing device. neat-stone's bridge, ods of minimizing errors. attometer, Drysdale polar Block diagram, principle	6 Hrs

Indule-I		
CO1. Implement the principles of basic electrical measuring instruments. CO2. Analyze the performance characteristics of measuring instruments. CO3. Design and analyze the aventure of different AC and DC that the CO3. Design and analyze the aventure of different AC and DC that they AC and DC values of unknown voltage. CO5. Evaluate the operation of Digital instruments and transducers. In a contract the cost of		
columne Outcomes CO2. Analyse the performance characteristics of measurable instrumentations. CO3. Beign and analyse the working of different AC and DC Irridges CO3. Beign and analyse the working of different AC and DC Irridges CO3. Beign and analyse the working of different AC and DC Irridges CO3. Evaluate the openition of Digital instruments and transducers. Digital Co4. The Co4. Th		
COJ. Basign and analyze the working of different AC and DC bridges COJ. Analyze instrument transformers and potentimenters the measure AC and DC values of unknown voltage. COJ. Svaluate the operation of Digital instruments and transducers. Total Cor.		
CO3. Analyze instrument transformers and potentionisters to measure AC and DC values of unknown voltage. CO5. Toolaute the operation of Digital instruments and transducers. Total Cox tenester BCCTRCAL MACHINIS H Review of Three phase synchronous generators, Cylindical rote theory: amanture reaction, amanture reaction reactance, synchronous reactance, phase of diagram, open & short circuit characteristics, short-reciuit ratio, load characteristics. Voltage regulation: EMP method, MMF method, modified MMF method, Zir Per method, Theory of salient pole machine: Blendel's two reaction theory, phasor diagram, direct and quadr synchronous reactances, Silp Test. Power Angle characteristics. Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous AMF method, Zir Per method, Theory of salient pole machine: Blendel's two reaction theory, phasor diagram, direct and quadr synchronous reactances, Silp Test. Power Angle characteristics. Indule-III Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Motors, Condition of the Synchronous Motors, Condition for maximum torque, Louses and efficiency. Feurivalent circuit, phasor diagram and preferenance equations. Methods of distrating (DOL_stator resistance statery, subrolated resistance stater). Methods of speed costnot. Double cage induction motors, Coging and Crawling of Induction motor. Indule-IV Single phase induction motor theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of distrating spit phases-terminating, Repulsion stating, and ded pole statenting, performance characteristics. Single phase seements Indule-IV In J. Nagarth, D. Rectaris: "Electrica Machinery" THA Plathishers 2. M. G. Say, "Performance and adesign of AC machiners", CRS Publishers Indule-IV (Saliants voltage regulation and analyze power angle equation. Ours. Our Describe and evaluate the performance		
COS. Evaluate the operation of Digital instruments and transducers.		
abject Code EE1205 BYLARUS SYLARUS SYLARUS Review of Three phase synchronous generators, Cylindrical cote theory: amalture reaction, manuture reaction reactance, synchronous reactance, phasor diagram, open & short circuit characteristics, bert-riccuit ratio, lead characteristics. Wolfage regulation: EMF method, MMF method, anodified MMF method, and another anodified MMF method, and another a		
toduk-I Review of Three phase synchronous generators, Cylindrical protection theory, phasor diagram, open & short circuit relations, are stated, as the control of the synchronous reactance, phasor diagram, open & short circuit reaction, are stated as the control of the contr		
debuted Name ELECTRICAL MACHINES-II Forequisites BASIC ELECTRICAL ENGINEERING (BEE 1001). SYLLABLS Review of Three phase synchronous generators, Cylindrical andar falory, amanture seations, and substantial productions of the seating performance characteristics. Single phase seatons of the seating of the seating performance characteristics of particular performance and seating of AC machines', CBS Publishers 1. A. E. Frizgerald, C. Kingeley, and S. Umana, "Electric Machinery", Third Publishers. 2. M. G. Say, "Performance and design of AC machines', CBS Publishers 1. A. E. Frizgerald, C. Kingeley, and S. Umana, "Electric Machinery", Third Publishers. 2. P. S. Bilman, Electrical Machinery (Part 1, Part 2), Klanna Publishers. 1. The Enrichment of the seating of the seating of the seating of the seating o	Contact Hour	30
Indule-I Review of Three phase synchronous generators, Cyfindrical root theory; amanture reaction, armsture reaction, executance, synchronous reacturace, phasor diagram, open & short circuit obstractivents, short-circuit ratio, load characteristics.		3
Induk-II Review of Three phase synchronous generators, Cylindrical root rehoptly armature reaction, armature reaction reacturace, synchronous reacturace, phasor diagram, open & short circuit characteristics, better-cruit ritio, bade characteristics. Voltage regulation: EMF method, MMF method, modified MMF method, 2PF method, 1 how yof salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadra synchronous reacturaces, Slip Test. Power Augle characteristics. Induk-III Perallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Transient and Sub transient reacturaces. Synchronous Motors:Operating principle, torque-angle characteristics, V-curves & in curves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor diagram and performance equations. Methods of starting (DOL attor resistance starter, autotransformer starter, star-delts start resistance starter). Methods of speed control. Double cage induction motor, Cogging and Crawting of Induction motor Single phase induction motor starting, shaded pole starting, spell phases starting, spell phases starting, shaded pole starting, performance characteristics. Single phase see there of the properties of starting spell phases starting, shaded pole starting, performance characteristics. Single phase see the device of operation (Double Revolving field theory of operation performance and application. Universal motor. 1. J. Nagrath, D. P. Kobari, "Electric Machinery," ITMI Publishers. 2. J. A. G. Say, "Performance and design of AC machinery," Call Publishers. 1. A. E. Fritzgeruld, C. Kingsley, and S. Umans, "Electric Machinery," Design of the subject of the subject the students will demonstrate the ability to: COL Describe cylindrical root theory of synchronous machines. 1. C. Say, "Performance and design of AC machinery," Call Publishers. 2. To understand the concept of Tython Program using sequen		
toduk-II The parallel operation: Synchronizing method, MMF method, modified MMF method, ZFF method, Theory of salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadro synchronous reactances, Slip Test, Power Angle characteristics. Toduk-III Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Interest and Sub transient reactances. Synchronous Motors-Operating principle, torque-angle characteristics. V-curves & incurves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor diagram and performance equations. Methods ofstarting (DOLastor resistance starter, autotransformer starter, star-delta start reastances starter, blothods of speed control. Dubble easy enhaction motor, cogging and Crawling of induction motor. Induk-V Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, pletemination of param Methods of starting; split phasestarting, Repulsion starting, shoded pole starting, performance characteristics. Single phase sections of operation of the proper starting of the phase starting and application. Induced and note. 1. J. Nagrath, D. P. Kothan, "Electric Machines," TAHI Publishers. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. J. Nagrath, D. P. Kothan, "Electric Machines," TAHI Publishers. 2. P. S. Bhimas, Electrical Machinery (Part 1, Part 2), Klaman Publishers. Upon completion of the satisfier the students will demonstrate the ability to: COI. Describe oplindrical rotor theory of synchronous machines. CO2. Peabulate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance of single phase motors and Universal motor. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Co4. Describe and evaluate the performance of three phase induction motors. CO5. To understand the concept of Dyb		
roter theory armsture reaction, armsture reaction exectance, synchronous reactance, phasor diagram, open & short circuit characteristics, short-circuit ratio, load characteristics. Voltage regulation: EMF method, MMF method, modified MMF method, ZPF method, Theory of salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadr synchronous reactances. Slip Test, Power Angle characteristics. Andule-III Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Transient and Sub transient reactances. Synchronous Motors: Operating principle, torque-angle characteristics, V-curves & incurves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor diagram and performance equations. Methods ofstarting (DOL stator resistance stater, autotransformer starter, stat-delts atmressiatunes starter). Methods of speed control. Double cage induction motor. Cogging and Chiming of Induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting, path phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phases theory of operation performance and design of AC machines? Secential Reading 1. A. E. Fritzgerfuld. C. Kingley, and S. Umans, "Electric Machinery", CBS Publishers 2. M. G. Say, "Performance and design of AC machinery", CBS Publishers Durse Outcomes 1. A. E. Fritzgerfuld. C. Kingley, and S. Umans, "Electric Machinery", CBS Publishers. 2. P.S. Bhimns, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimns, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimns, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 3. To be able to understand and careau User Defined Function. 4. To understand the concept of Python Program using sequence data and Control statements. 5. To understand the concept of Strings an		
totor fleory: armature reaction, armature reaction, expelvronous reactance, phasor diagram, open & short circuit characteristics, short-circuit ratio, load characteristics. Voltage regulation: EMF method, MMF method, modified MMF method, 2PF method, Theory of salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadr synchronous reactances. Slip Test, Power Angle characteristics. Module-III Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Transient and Sub transient reactances. Synchronous Motors: Operating principle, torque-angle characteristics, V-curves & incurves, Hunting. Module-IV Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, plasor di diagram and performance equations. Methods ofstarting (DOL, stator resistance stater, autornatoforme starter, state-delts attractesistance). Methods of starting performance equations. Methods ofstarting (DOL, stator resistance). Starter, autornatoforme starter, state-delts attractesistance starter). Methods of speed control. Double caps induction motor. Cogging and Crowing for fluction motor. Module-V Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting, perior in plasmateristics, Single phases entheory of operation performance and application. Universal motor. Exsential Reading 1. A. E. Fittiggendal, C. Kingsley, and S. Umans, "Electric Machinery", TIMH Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. Course Otteomes Course Otteomes Course Otteomes L. A. E. Fittiggendal, C. Kingsley, and S. Umans, "Electric Machinery", TIMH Publishers. 2. P.S. Bhimra, Electrical Machinery of synchronous machines. CO2. Analyze and evaluate the performance of single phase motors and Universal motor. CO3. Analyze and evaluate the performance of single phase motors and Universal mot		
Voltage regulation: EMF method, MMF method, modified MMF method, ZPF method, Theory of salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadr synchronous reactances, Slip Test. Power Angle characteristics. Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronou Transient and Sub transient reactances. Synchronous Motors: Operating principle, torque-angle characteristics, V-curves & in curves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency, Equivalent circuit, phasor di diagram and performance equations. Methods ofstarting (DDL sattor resistance statter, autoransformer stater, state-delts atur restance starty. Methods of speed control. Double cage induction monter, Cogging and Criming of Induction Teststance starter, Methods of speed control. Double cage induction monter, Cogging and Criming of Induction Methods of starting, split phasesturing, Repulsion starting, shaded pole starting, performance characteristics. Single phase so theory of Operation performance and application. Universal motor. 1. J. Nagrath, D. P. Kothari, "Electric Machiners", TSP Publishers. 2. M. G. Say, "Performance and design of AC machiners", CBS Publishers. 1. A. E. Fritzgerald, C. Kingsley, and S. Uranas, "Electric Machinery", TMF Publisher. 2. P. S. Bhirms, Electrical Machinery (Part I, Part 2), Khanna Publishers. 2. P. S. Bhirms, Electrical Machinery (Part I, Part 2), Khanna Publishers. 2. P. S. Bhirms, Electrical Machinery (Part I, Part 2), Khanna Publishers. 2. Col. Describe and evaluate the performance of single phase motors and Universal motor. 2. Sandaya and evaluate the performance of single phase motors and Universal motor. 2. To understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand and center User Defined Function. 4. To understand the concept of Sphon Program using sequence data and Control statements.	t	6 Hrs
Indule-II MMF method, ZPF method, Theory of salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadre synchronous reactanees, Slip Test. Power Angle characteristics. Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Motors. Operating principle, torque-magle characteristics, V-curve & in curves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor di diagram and performance equations. Methods of starting (Calculator resistance starter, autotransformer starter, start-delts sarting many performance equations. Methods of starting (Calculator resistance starter, autotransformer starter, start-delts sarting resistance starter, starting performance characteristics of spublishers. 1. J. Nag		
Indule-II MMF method, ZPF method, Theory of salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadre synchronous reactanees, Slip Test. Power Angle characteristics. Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Motors. Operating principle, torque-magle characteristics, V-curve & in curves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor di diagram and performance equations. Methods of starting (Calculator resistance starter, autotransformer starter, start-delts sarting many performance equations. Methods of starting (Calculator resistance starter, autotransformer starter, start-delts sarting resistance starter, starting performance characteristics of spublishers. 1. J. Nag		
Synchronous reactances, Slip Test. Power Angle characteristics.		
characteristics. Control of Control	adrature axis	6 Hrs
Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Motors: Operating principle, torque-angle characteristics, V-curves & in curves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor di diagram and performance equations. Methods of starting (DOL, stator resistance starter, autotransformer starter, star-delts start resistance starter). Methods of speed control. Double cage induction motor. Cogging and Crawling of Induction motor. Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting; split phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phase set theory of operation performance and application. Universal motor. Sesential Reading		
Transient and Sub transient reactances. Synchronous Motors-Operating principle, torque-angle characteristics, V-curves, & incurves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phase of diagram and performance equations. Methods of starting (DOL, stator resistance starter, autotransformer starter, star-delta start resistance starter). Methods of speed control. Double cage induction motor, Cogging and Crawling of Induction motor. Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting; split phase-starting, Repulsion starting, shaded pole starting, performance characteristics. Single phase set theory of operation performance and application. Universal motor. Sesential Reading 1. J. Nagrath, D. P. Kothari, "Electric Machiners", TMH Publishers. 2. M. G. Say, "Performance and design of AC machiners", CBS Publishers 1. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publishers. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. Upon completion of the subject the students will demonstrate the ability to: COI. Describe optimidrial rotor theory of synchronous machines. CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance of three phase induction motors. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction m		
Transient and Sub transient reactances. Synchronous Motors-Operating principle, torque-angle characteristics, V-curves & incurves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor didigarm and performance equations. Methods of starting (DOL, stator resistance starter, autotransformer starter, star-delta start resistance starter). Methods of speed control. Double cage induction motor. Cogging and Crawling of Induction motor. Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting: split phase-starting, Repulsion starting, shaded pole starting, performance characteristics. Single phase se theory of operation performance and application. Universal motor. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publisher. 2. P.S. Bhirma, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. J. Say, Performance and design of AC machines", CBS Publishers 1. J. Say, "Performance and design of AC machines", CBS Publishers 2. J. Say, "Performance and design of AC machines", CBS Publishers 2. J. Say, "Performance and design of AC machines", CBS Publishers 2. J. Say, "Performance and design of AC machines", CBS Publishers 2. J. Say, "Performance and design of AC machines", CBS Publishers 2. J. Say, "Performance and design of AC machines", CBS Publishers 2. J. Say, "Performance and design of AC machines", CBS Publishers 2. J. Say, "Performance and design of AC machines", CBS Publishers 2. J. Say, "Performance and design of AC machines", CBS Publishers 3. J. Say, "Performance and design of AC machines", CBS Publishers 3. J. Say, "Performance design of AC machines", CBS Publishers 3. J. Say, "Performance design		
curves, Hunting. Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor didingram and performance equations. Methods ofstarting (DOL_stator resistance starter, autotransformer starter, star-delta start resistance starter), Methods of speed control. Double cage induction motors. Cogging and Grawling of Induction motor. Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting; spit phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phases se theory of operation performance and application. Universal motor. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. A. E. Fritzgentid, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publisher. 2. P. S. Bhimms, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P. S. Bhimms, Electrical Machinery of synchronous machines. COL: Describe cylindrical rotor theory of synchronous machines. COL: Describe and evaluate the performance of single phase motors and Universal motor. COL: Analyze and evaluate the performance of three phase induction motors. COL: Describe and evaluate the performance of three phase induction motors. COL: Describe and evaluate and created user Defined Function. 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To u		6 Hrs
Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor didingram and performance equations. Methods ofstarting (DOL,stator resistance starter, autotransformer starter, star-delta start resistance starter), Methods of speed control. Double cage induction motor, Cogging and Crawling of Induction motor. Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting: split phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phase set theory of operation performance and application. Universal motor.	x inverted V-	
diagram and performance equations. Methods of starting (DOL_stator resistance starter, autotransformer starter, star-delta start resistance starter). Methods of speed control. Double cage induction motor, Cogging and Crawling of Induction motor. Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting; split phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phase sentency of operation performance and application. Universal motor. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. Out occupied the subject the students will demonstrate the ability to: 2. CO1. Describe cylindrical rotor theory of synchronous machines. 2. CO2. Evaluate voltage regulation and analyze power angle equation. 2. CO3. Analyze and evaluate the performance of single phase motors and Universal motor. 2. CO4. Describe and evaluate the performance of three phase induction motors. 2. CO5. Analyze and evaluate the performance of three phase induction motors. 2. To understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Python Program using sequence data and Control statements. 3. To understand the concept of OPs and its implementation. 5. To understand the concept of OPs and its implementation. 5. To understand the concept of OPs and its implementation. 5. To understand the concept of OPs and its implementation. 5. To understand the concept of OPs and its implementation. 5. To understand the concept of OPs and it		
diagram and performance equations. Methods of Starting (DOL, stator resistance starter, autotransformer starter, star-delta start resistance starter). Methods of speed control. Double cage induction motor, Cogging and Crawling of Induction motor. Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of param Methods of starting; split phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phase set theory of operation performance and application. Universal motor. 2. M. G. Say, "Performance and design of AC machines", TMI Publishers. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMI Publishers. 2. P.S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. Outserobe cylindrical rotor theory of synchronous machines. 2. COL Evaluate voltage regulation and analyze power angle equation. 2. COL Evaluate voltage regulation and analyze power angle equation. 2. COL A. Describe and evaluate the performance of hire phase induction motors. 2. COL Security and evaluate the performance of three phase induction motors. 2. COL Evaluate voltage regulation and analyze power angle equation. 3. To be able to understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Pyt	an diaanan ainala	6 IIwo
resistance starter). Methods of speed control. Double cage induction motor, Cogging and Crawling of Induction motor. Methods of starting: split phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phase see theory of operation performance and application. Universal motor. Sesential Reading 1. J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery of synchronous machines. 2. CO2. Evaluate voltage regulation and analyze power angle equation. 2. CO3. Analyze and evaluate the performance of single phase motors and Universal motor. 2. CO4. Describe and evaluate the performance of single phase motors and Universal motor. Subject Code 2. Subject Name Programming in Python 1. Introduction to Python Language and its features. 2. To understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand and create User Defined Function. 4. To understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand the concept of Strings and file handling SYLLABUS **SYLLABUS** **SYLLABUS** **SYLLABUS** **Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, begas and anothing, begas externs tatements, Nesting of loops. **Modules-III** **Double-III** **Double-III** **Double-III** **Double-III** **Double-III** **Double-III** **Double-III** **Double-III** **Double-III** **Syllabus and Regular Expressi		6 Hrs
Methods of starting; split phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phase set theory of operation performance and application. Universal motor. 1. J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers 2. M. G. Say, "Performance and design of AC machines", TBS Publishers 1. I. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publishers. 2. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. P. S. Bhimm, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 1. Part 2 Publ		
Methods of starting; split phasestarting, Repulsion starting, shaded pole starting, performance characteristics. Single phase set theory of operation performance and application. Universal motor. 1. J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers 2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publishers. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 3. CO1. Evaluate voltage regulation and analyze power angle equation. 2. CO3. Analyze and evaluate the performance of synchronous machines. 3. CO4. Describe and evaluate the performance of single phase motors and Universal motor. 4. Total Core emester 4. The programming in Python 1. Introduction to Python Language and its features. 2. To understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand and create User Defined Function. 4. To understand the concept of OOPs and its implementation. 5. To understand the concept of Python Program using sequence data and Control statements. 4. To understand the concept of Python Program using sequence data and continue, pass & return statements, Nesting of loops. 4. To understand the concept of OOPs and its implementation. 5. To understand the concept of Python Program using sequence data and continue, pass & return statements, Nesting of loops. 4. To understand the concept of OoPs and its implementation. 5. To understand the concept of OoPs and its implementation. 5. To understand the concept of OoPs and its implementation. 6. To understand the concept of Python Program using sequence data and continue, pass & return statements, Nesting of loops. 4. To understand the concept of Python Progr		
theory of operation performance and application. Universal motor. 1. J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers. 2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. A. E. Fritzgendd, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publisher. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 3. To be always and evaluate the performance of supplied equation. 3. To be able to understand the performance of three phase induction motors. 3. To be able to understand and create User Defined Punction. 4. To understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand and create User Defined Punction. 4. To understand the concept of OOPs and its implementation. 5. To understand the concept of Strings and file handling 4. To understand the concept of Strings and file handling 4. To understand the concept of Strings and Electrical Machinery and Electrical Machinery and Electrical Machinery and Electrical Machinery and Electrical Machi		6 Hrs
2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publisher. 2. P. S. Bhirma, Electrical Machinery (Part 1, Part 2), Khanna Publishers. Upon completion of the subject the students will demonstrate the ability to: CO1. Describe cylindrical rotor theory of synchronous machines. CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance characteristics of synchronous motors. CO4. Describe and evaluate the performance of hree phase induction motors. CO5. Analyze and evaluate the performance of hree phase induction motors. CO5. Analyze and evaluate the performance of hree phase induction motors. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. 1. Introduction to Python Imaguage and its features. 2. To understand the concept of Python Program using sequence data and Control statements. 3. To be able to understand and create User Defined Function. 4. To understand the concept of OPs and its implementation. 5. To understand the concept of Strings and file handling SYLLABUS 1. Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of Ioops. Modules: Bull-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insembles. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruc Inheritance. Exception	,	
2. M. G. Say, "Performance and design of AC machines", CBS Publishers 1. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publisher. 2. P. S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. Upon completion of the subject the students will demonstrate the ability to: CO1. Describe evilndrical rotor theory of synchronous machines. CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance of haracteristics of synchronous motors. CO4. Describe and evaluate the performance of haracteristics of synchronous motors. CO5. Analyze and evaluate the performance of his phase motors and Universal motor. Subject Code CS1204 Total Cor Subject Name Programming in Python 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OPs and its implementation. 5: To understand the concept of Strings and file handling SYLLABUS Module-1 Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of Ioops. Module-11 Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insemble to the content of the programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction. Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Module-11 Tuple and methods, Sets and methods, Dictionary, Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recu		
TMIR Publisher. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. Upon completion of the subject the students will demonstrate the ability to: CO1. Describe cylindrical rotor theory of synchronous machines. CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance of three phase induction motors. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO6. Analyze and evaluate the performance of single phase motors and Universal motor. Total Cor Subject Code CS1204 Total Cor Subject Name Programming in Python I: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Strings and file handling Module-1 Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants, Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of Ioops. Module-1 Module-1 Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction and Continue and Continue pass of the Constructor of String Module. Strings and Regular Expressions: Nethods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
TMIR Publisher. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. Upon completion of the subject the students will demonstrate the ability to: CO1. Describe cylindrical rotor theory of synchronous machines. CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance of three phase induction motors. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO6. Analyze and evaluate the performance of single phase motors and Universal motor. Total Cor Subject Code CS1204 Total Cor Subject Name Programming in Python I: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Strings and file handling Module-1 Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants, Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of Ioops. Module-1 Module-1 Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction and Continue and Continue pass of the Constructor of String Module. Strings and Regular Expressions: Nethods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. Upon completion of the subject the students will demonstrate the ability to: CO1. Describe cylindrical rotor theory of synchronous machines. CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance of three phase induction motors. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of three phase induction motors. CO6. Analyze and evaluate the performance of three phase induction motors. CO7. Analyze and evaluate the performance of three phase induction motors. CO8. Analyze and evaluate the performance of three phase induction motors. CO6. Analyze and evaluate the performance of three phase induction motors. CO7. Analyze and evaluate the performance of three phase induction motors. CO8. Analyze and evaluate the performance of three phase induction motors. CO8. Analyze and evaluate the performance of three phase induction motors. CO8. Analyze and evaluate the performance of three phase inductions and Universal motors. I Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. SYLLABUS Module-I Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants, Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output Indentation. Operators and expressions and expressions in Naming Conventions with examples, Managing Input and Output Indentation. Operators a		
Upon completion of the subject the students will demonstrate the ability to: CO1. Describe cylindrical rotor theory of synchronous machines. CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance characteristics of synchronous motors. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. Subject Code CS1204 Total Cor With Total Cor Wileyet Name Programming in Python 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Strings and file handling SYLLABUS Module-I Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction-Interiance. Exception Handling: Handling Exceptions: Wethods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re		
Course Outcomes CO1. Describe cylindrical rotor theory of synchronous machines. CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance of three phase induction motors. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO6. Total Co6 CC1204 CT04 CO7 Total C		
CO2. Evaluate voltage regulation and analyze power angle equation. CO3. Analyze and evaluate the performance of three phase induction motors. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. Total Cor Subject Code CS1204 Total Cor Subject Name Programming in Python I: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Strings and file handling SYLLABUS Module-I Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Module-III Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruct Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For		
CO3. Analyze and evaluate the performance characteristics of synchronous motors. CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO6. Analyze and evaluate the performance of single phase motors and Universal motor. CO6. Analyze and evaluate the performance of single phase motors and Universal motor. CO6. Analyze and Evaluate the performance of single phase motors and Universal motor. CO6. Analyze and Universal motor. CO6. Analyze and Evaluate and Control statements. CO6. Analyze and Co6. Analyze and Control statements. CO6. Analyze and Co6. Analyze an		
CO4. Describe and evaluate the performance of three phase induction motors. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor. CO5. Analyze and evaluate the performance of single phase motors and Universal motor.		
CO5. Analyze and evaluate the performance of single phase motors and Universal motor. Total Corcenses Total Corcenses		
emester ubject Name Programming in Python 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants, Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
emester ubject Name Programming in Python 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Strings and file handling SYLLABUS 10dule-1 Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants, Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. 10dule-III Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
l: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map. Filter. Indule-III Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.	Contact Hour	30
1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling SYLLABUS	Credit	2
2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Indule-III		
4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Handling: Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
SYLLABUS		
Iodule-I Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identific Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map. Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Module: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruct Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.	ntifiers, Literals,	6 Hrs
Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and inse Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally		
Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insemulated mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions.	ings and	
Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		8 Hrs
Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		
Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destruction Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.		6 Hrs
Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally		
Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String For Regular Expressions: Re-Module.	su uctor and	6 Hrs
10dule-V Regular Expressions: Re-Module.		
regular Expressions re module.	g Formatting,	4
Fire transming. Indoduction to the transming, the Operations, Directories.		4 Hrs
1. Dethon Decommend for Deciments by Adom Stayrout		
2. Python Cookbook by David Beazley and Brian K. Jones		

	CO1: Understand the Python Language and its features. CO2: Apply sequence data and control statements to solve problem CO3: Able to create user defined functions to solve problems. CO4: Analyze the concept of OOPs and its implementation.	
Course Outcomes Subject Code	CO3: Able to create user defined functions to solve problems.	
Subject Code	CO4: Analyze the concept of OOPs and its implementation.	
Subject Code	CO5: Create the python program using strings and files.	
Subject Code	CO3. Create the python program using strings and mes.	
	HS1202 Total Contact Hour	30
Semester	4th Total Credit	2
Subject Name	Organizational Behaviour	
Course Objective	1: To understand the relevance of organizational behavior concepts and theories in real-life organizational settings & to develop skills in crit decision —making, problem-solving in applying organizational behavior concepts to practical situations. 2: To provide an understanding of individual behavior in the workplace, including personality, motivation, perception, learning, and attitude 3: To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivatio in managing organization. 4: To explore how organizational culture affects behavior, communication and decision making by enhancing creativity and innovation and how to cope with change and stress. 5: To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaboraculture	s. n and leadership give an episteme
	SYLLABUS	
Module-I	Fundamentals of OB & Understanding the Basic Framework of OB: Evolution of OB through Quality Management movement, Definitions, Scope & Importance of OB, Challenges (Diversity, Globalisation& Ethical Perspective) and opportunities for OB, models of OB, applying OB to solving problems.	6 Hrs
Module-II	Understanding the Determinants of Individual Behavior: Determinants of personality, Theories of Personality (Type &Psychoanalytic theory), MBTI, Big five personality traits and other major traits influence workplace behavior. Perception: Meaning, Perceptual Process, Application of Perception at Workplace. Motivation: Motivation Framework, Content theory (Maslow's need hierarchy & Hertzberg's two factors theory), Process theory (Adam's Equity & Vroom's Expectancy theory), Job Design And motivation, Importance of motivation at Workplace. Learning: Theories of learning (Classical Conditioning, Operant Conditioning, & Cognitive Theory), Principles of Learning. Bhavioral modification through learning.	6 Hrs
Module-III	Understanding Group and Team Behavior at Workplace: Defining and classifying groups, the five-stage model of group development Group properties: Roles, norms, status, size and cohesiveness, Group decision making. Leadership: Meaning, Definition & types of leadership: Trait theories of leadership: Trait theories, Contingency theories, Contemporary approaches to leadership, importance of leader in organisations.	6 Hrs
Module-IV	Understanding Group and Team Behavior at Workplace: Organisational Culture: Meaning, Definition, Cultural dimensions, effect of Organisational culture Organisational Change & Development: Nature, Levels & types of Change, Change Agents: Resistance to Change, Force field theory of	6 Hrs
Module-V	Change, Managing the Change. Conflict & International Organisational Behavior: Managing Conflict and Negotiations: Meaning, views, & levels of Conflict, Process of conflict, Conflict resolution techniques. Transactional Analysis: Meaning, Importance of TA, Life position, Ego states And their encounters. IOB: Internationalisation of Business, Cultural differences and similarities, Understanding Interpersonal behavior across culture through Hofstede's Cultural Dimensions	
Essential Reading	"Organizational Behavior: Text, Cases, & Games" by K. Aswathappa .Publisher: Himalaya Publishing House "Essentials of Organizational Behavior" by Stephen P. Robbins and Timothy A. Judge. Publisher: Pearson Education.	
Supplementary Reading	1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Micl Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-S. "Organizational Behavior and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: McGraw-Hill Education. CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3. Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational sco4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations.	-Hill Education. er: Wiley
Subject Code	EC1284 Total Contact Hour	20
Semester	4 th Total Credit	1.5
Subject Name	Digital System Design Lab	
	1. Understanding different MSI ICs and their specifications used in laboratory and practical field. 2. To formulate, design and implement various combinational and sequential circuits. 3. To formulate, design and implement various sequential circuits. 4. To design and implement memory. 5. To familiar with the Hardware Description Language.	
Course Objective		
·	List of Experiments	
1	Digital logic gates: Design, Implement & test a given design example with Universal Gates only.	
1 2	Digital logic gates: Design, Implement & test a given design example with Universal Gates only. Gate level minimization: Two level & multi-level implementation of Boolean function.	
1	Digital logic gates: Design, Implement & test a given design example with Universal Gates only. Gate level minimization: Two level & multi-level implementation of Boolean function. Combinational circuits: design, construct & test: adder & subtractor, code converter, gray code to binary and 7 segment displays.	
1 2 3	Digital logic gates: Design, Implement & test a given design example with Universal Gates only. Gate level minimization: Two level & multi-level implementation of Boolean function.	
1 2 3 4	Digital logic gates: Design, Implement & test a given design example with Universal Gates only. Gate level minimization: Two level & multi-level implementation of Boolean function. Combinational circuits: design, construct & test: adder & subtractor, code converter, gray code to binary and 7 segment displays. Design with multiplexers & de multiplexers.	

Course Outcomes	Identify different ICs used in laboratory and practical field Design and analyze combinational circuits Design and analyze sequential circuits Have an brief idea of working principle of memory Implement the digital circuits in HDL and FPGA Hardware.		
	SESSIONAL		
Subject Code	CH1284	Total Contact Hour	20
Semester	4 th	Total Credit	1.5
Subject Name	Electrical Machines LABORATORY-II	20000	
3	List of Experiments		
1	Voltage regulation of alternator by EMF method		
2	Voltage regulation of 3 phase alternator by ZPF method		
3	Synchronization of alternator with infinite bus		
4	Determination of power angle characteristics of an Alternator		
5	V curve and inverted V curve of a 3-Ph synchronous motor		
6	No load and Blocked rotor test of three phase Induction motor		
7	Load test of 3-Ph Induction Motor		
8	Speed control of a 3 phase induction motor		
9	Determination of Parameters of single phase induction motor		
10	Determination of Parameters of 3 phase three winding transformer and trace the waveform of N	Nagnetizing Current & Induced of	e.m.f
Course Outcomes	CO1. Perform various tests on synchronous machines and to determine their characteristics. CO2. Synchronize a given alternator to infinite bus. CO4. Determine parameters of three phase and single phase induction motors. CO4. Describe different losses of single phase transformer CO5. Determine characteristics, parameters and connections of three phase transformers		
	SESSIONAL		
Subject Code	SESSIONAL CS1284	Total Contact Hour	20
		Total Contact Hour Total Credit	20 1.5
Subject Code Semester Subject Name	CS1284		
Semester Subject Name	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling		
Semester Subject Name	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments		
Semester Subject Name Course Objectives	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling		
Semester Subject Name Course Objectives	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language.		
Semester Subject Name Course Objectives 1 2 3 4	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basic Data Structures in Python.		
Semester Subject Name Course Objectives 1 2 3	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basic Data Structures in Python. Program on Conversion from on data type to another.		
Semester Subject Name Course Objectives 1 2 3 4 5 6	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basic Data Structures in Python. Program on Functions in Python. Program on Functions in Python. Program using Object Oriented Programming in Python. Program using Inheritance in Python.		
Semester Subject Name Course Objectives 1 2 3 4 5 6 7	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basic Data Structures in Python. Program on Conversion from on data type to another. Program using Object Oriented Programming in Python. Program using Inheritance in Python. Program using Inheritance in Python. Program using String in Python.		
Semester Subject Name Course Objectives 1 2 3 4 5 6 7 8	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basic Data Structures in Python. Program on Conversion from on data type to another. Program using Object Oriented Programming in Python. Program using Inheritance in Python. Program using String in Python. Program using Regular expression in Python.		
Semester Subject Name Course Objectives 1 2 3 4 5 6 7	CS1284 4th Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basic Data Structures in Python. Program on Conversion from on data type to another. Program using Object Oriented Programming in Python. Program using Inheritance in Python. Program using Inheritance in Python. Program using String in Python.		